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Elastic interfaces embedded in �quenched� random media exhibit metastability and stick-slip dynamics.
These nontrivial dynamical features have been shown to be associated with cusp singularities of the coarse-
grained disorder correlator. Here we show that annealed systems with many absorbing states and a conserva-
tion law but no quenched disorder exhibit identical cusps. On the other hand, similar nonconserved systems in
the directed percolation class are also shown to exhibit cusps but of a different type. These results are obtained
both by a recent method to explicitly measure disorder correlators and by defining an alternative new protocol
inspired by self-organized criticality, which opens the door to easily accessible experimental realizations.
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Elastic objects or interfaces evolving in disordered media
constitute a simple and unified way to describe the phenom-
ena as different as wetting, dislocations, cracks, domain
walls in magnets, or charge-density waves �1�. In all these
examples, two conflicting mechanisms compete: the ten-
dency to minimize the elastic energy, leading to flat inter-
faces, and the propensity to accommodate to local minima of
a random pinning potential, giving rise to rough profiles. In
this way, many different meta-stable states exist, opening the
door to the rich phenomenology characteristic of disordered
systems: slow dynamics, creeping, stick-slip motion, ava-
lanches, etc �2�. At zero temperature and in the presence of a
pulling force, a critical point separates two different phases:
�i� a pinned one, in which disorder dominates and the inter-
face remains trapped at some local minimum of the random
potential, and �ii� a depinned phase in which the force over-
comes the pinning potential and the interface moves forward.
A prominent example characterizing the dynamics of these
systems is the quenched Edwards-Wilkinson equation

�th�x,t� = ��2h�x,t� + F + ��x,h�x,t�� , �1�

where � is a constant, h�x , t� is the interface height, F is an
external force, and ��x ,h�x , t�� is a quenched �random-field�
noise. The noise correlator is ���x ,0���x� ,u��=�0�u���x
−x��, where �0�u� is some fast-decaying function. At a criti-
cal force, Fc, Eq. �1� shows a depinning transition, represen-
tative of a broad universality class. Analytical understanding
of Eq. �1� comes from various fronts, including the func-
tional renormalization group �FRG� �3,4�, in which the dis-
order correlator, �0�u�, renormalizes as a function. This ap-
proach led, some years ago, to a successful computation of
critical exponents in an ��=4−d� expansion up to one-loop
order �3�. The emerging FRG fixed-point function for the
disorder correlator, ���u�, presents the peculiarity of having
a cusp singularity at the origin, i.e., ����0+�=−����0−��0.
Very interestingly, such “cusps,” rather than curiosity, have
been argued to be essential to capture the physics of disor-
dered systems �2,5–7�. Physically, the underlying idea is that
the effective energy landscape describing a random media in
which an interface advances consists of a series of parabolic

wells �representing different metastable states� matching at
singular points where the first derivative �i.e., the force� is
discontinuous �2,6,7�. In this way, the total random force
experienced by the interface as it advances has necessarily a
sawtooth profile, with linear increases followed by abrupt
falls �see Fig. 1�. These jumps reflect the change from one
metastable state to another; they dominate the statistics of the
correlation functions and generate a cusp singularity at the
origin of the renormalized disorder correlator. Le Doussal
and co-workers �4–6� extended the FRG calculation up to
two-loops and developed a strategy to measure disorder cor-
relators, allowing us to test the FRG predictions in computer
simulations as follows. In Eq. �1�, F is replaced by a confin-
ing force FLDW=m2�w−h�x , t��, derivative of a parabolic po-
tential centered at a h=w, where w is a constant. For any w,
a stable sample-dependent interface configuration, with aver-

age height h̄, is found. Then, by slowly increasing w, FLDW
grows until, eventually, the interface overcomes a barrier and

falls into a new metastable state with larger h̄ �giving rise to

-0.02

-0.01

0

0.01

0.02

FLDW <FLDW>

2.3 2.4 2.5 2.6
Number of driving (MC) steps

-0.02

-0.01

0

0.01

0.02

E-<E>

FIG. 1. �Color online� Up �down�: Steady-state time series of
the spatially averaged force �background field� for a single run of
Eq. �1� �Eq. �3�� using the protocol by Le-Doussal-Wiese �using
self-organized criticality�; the average values have been subtracted
in both cases. Linear increases are followed by abrupt falls: the
fingerprint of the cusps.

PHYSICAL REVIEW E 79, 050106�R� �2009�

RAPID COMMUNICATIONS

1539-3755/2009/79�5�/050106�4� ©2009 The American Physical Society050106-1

http://dx.doi.org/10.1103/PhysRevE.79.050106


sawtooth profiles�. The main breakthrough in �5,6� is to

prove that, for a size L, the cumulants of w− h̄ can be written
as

�w − h̄�w�� = Fc�m�/m2,

���w − h̄�w���w� − h̄�w�����c = �m�w − w��/�m4Ld� ,

���w − h̄�w�� − �w� − h̄�w����3�c = Sm�w − w��/�m6L2d�
�2�

and that, taking the limit m→0, Fc�0+� converges to the
critical force Fc and �0+ �respectively, S0+� coincides with �is
a function of� the FRG fixed point, ���u� �6,7�. Numerical
measurements of the cumulants in Eq. �2� agree nicely with
the two-loop FRG predictions �6,7�.

In this Rapid Communication, we show that cusps appear
also in the apparently very different realm of systems with
annealed disorder; systems with many absorbing states
�ASs�, a conservation law, and no quenched disorder exhibit
cusps identical to those of Eq. �1�. Instead, similar models
with AS in the directed percolation �DP� class, as well as the
Bak-Tang-Wiesenfeld sandpile model have also cusps but of
different types. Moreover, we introduce an alternative strat-
egy to measure the cusps using self-organized criticality
�SOC�, i.e., by alternating slow- driving and boundary dissi-
pation. This provides a practical and easy strategy to observe
the cusps in numerics and in experiments.

Systems with absorbing states have annealed noise and a
dynamics which leads to frozen/absorbing microscopic con-
figurations. Well-known examples are DP, the contact pro-
cess, or the Domany-Kinzel automaton �8�. All these exhibit
a transition from an absorbing to an active phase in the very
robust DP universality class, represented by the Langevin
equation: �t��x , t�=a�−b�2+�2�+		���x , t�, where a and
b are the parameters, ��x , t� is the activity field, and � is a
zero-mean Gaussian white noise. The square-root noise en-
sures the AS condition: fluctuations cease at �=0. Scaling
features different from DP emerge only in the presence of
extra symmetries or conservation laws �8,9�. Of particular
interest are systems with many AS, in which absorbing con-
figurations have a nontrivial structure represented by a back-
ground field encoding the likeliness of absorbing configura-
tions to propagate activity when perturbed and allowing for
metastability to appear. Two main classes of such systems
are the following:

�i� The conserved-DP �C-DP� class �which captures the
gist of stochastic sandpiles as the Manna or the Oslo one
�10�� is represented by a Langevin equation similar to that of
DP but with an extra conservation law �9,11,12�:

�t��x,t� = a� − b�2 + 
�E�x,t� + �2� + 		���x,t�

�tE�x,t� = D�2� , �3�

where a, b, D, and 
 are parameters and E�x , t� is the �con-
served and nondiffusive� background field. Notwithstanding
its similarity with the well-behaved DP equation, Eq. �3� has

resisted all renormalization attempts and sound analytical
predictions are not yet available �13�.

�ii� The directed percolation class with many AS �14�.
Defined by models as the pair contact process �14�, this class
has no extra symmetry/conservation law with respect to DP.
Its corresponding Langevin equation is

�t��x,t� = a� − b�2 + 
���x,t� + �2� + 		���x,t�

�t��x,t� = �� − 
�� , �4�

where a ,b ,
 ,� and 
 are parameters. Despite the nontrivial
absorbing phase, characterized by the background field
��x , t�, Eq. �4� exhibits DP �bulk� criticality �14�.

Remarkably, it has been conjectured that Eqs. �1� and �3�
are equivalent descriptions of the same underlying physics
�11,15�. In spite of the absence of rigorous proof, there is
strong theoretical and numerical evidences backing this con-
jecture �15�. Indeed, there are heuristic arguments which,
starting from Eq. �3� and defining a “virtual interface”
H�x , t�=
0

t dt���x , t�� which encodes the past activity history,
lead to Eq. �1� as an effective equation for H�x , t�. Note that
any past noise trajectory is a frozen variable, allowing us to
map present-time annealed noise into quenched disorder.
Moreover, the background field E�x , t� in Eq. �3� can be
identified with the force F+��2h�x , t� in Eq. �1�; both en-
code the propensity to propagate activity or motion at each
site �15�.

In what follows, we �a� reproduce the results in �6� for Eq.
�1� and introduce an alternative protocol to measure them,
�b� look for cusps in Eq. �3� and compare them with those in
quenched systems to verify if, indeed, they both represent the
same physics, and �c� explore whether different types of
cusps exist for other AS systems.

�a� We directly integrate a discretized version of Eq. �1� in
one dimension, with a force m2�w−h�x , t�� and periodic
boundary conditions �6�. ��x ,h� takes quenched random val-
ues at discrete equispaced values of h and is linearly inter-
polated in between. To simplify the numerics we use an over-
all Heaviside step function in the right-hand side �rhs� of Eq.
�1� forbidding the interface to move backward �16�. For each
w the dynamics eventually reaches a pinned configuration
�nonpositive rhs everywhere�. By increasing quasistatically
the value of w and using Eq. �2�, we determine Fc, ��u�, and
S�u�. It is convenient �see �5,6�� to use normalized functions
defined by Y�u /u��=��u� /��0� with u� fixed by

0

�Y�z�dz=1 and Q���w� /��0��=
0
wS�w��dw� /
0

�S�w��dw�.
The universal functions Y�z� and Q�y� are determined for up
to L=212 and m2=0.001. Results are indistinguishable from
those in �6� for both functions �see Fig. 2�.

We now define an alternative protocol to measure the
cusps. The basic idea is to let the system self-organize to its
critical state by iterating local slow driving and boundary
dissipation as done in self-organized criticality �17,18�. Start-
ing from a pinned interface, slow driving is implemented by
increasing the force F �which becomes a x-dependent func-
tion� at a randomly selected site by a small amount. This is
repeated until the interface gets depinned at some point.
Then �and only then� the dynamics �Eq. �1�� proceeds. Open
boundaries h�0�=h�L+1�=0 allow for “dissipation” or force
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reduction �i.e., owing to the open boundaries, the interface
develops, on average, a parabolic profile with negative aver-
age elastic force� inducing the system to get pinned again,
and so forth. This driving/dissipation cycle is iterated until a
steady state is reached. Then correlations between the spa-

tially averaged �pulling plus elastic� force F̄+�2h, at differ-
ent driving steps, are measured. Note that this averaged force
defines a stochastic �generalized Ornstein-Uhlenbeck� pro-
cess confined inside a L-dependent potential. As the force
balances at each pinned state the corresponding random pin-
ning force, its correlations provide direct access to the
quenched-disorder correlations. We have verified that the av-
erage pulling force is identical to the critical force Fc �see
Eq. �2�� and measured the cumulant ratios; both Y�z� and
Q�y� turn out to be indistinguishable from their counterparts
above �see Fig. 2�. This coincidence follows from the fact
that we are just considering two alternative “ensembles” to
study Eq. �1� at criticality. In the first, fixed velocity en-
semble, one considers closed boundaries and lets the velocity
go to 0+ �m2→0�. Instead, in the second one, we let the
system self-organize by combining slow driving and bound-
ary dissipation at infinitely separated time scales �17,18�.
These two paths lead to the same critical properties �19�.

�b� We now adapt these two protocols to study systems
with many AS. We start analyzing Eq. �3� in one-dimensional
lattices �size up to L=212� using the recently proposed effi-
cient integration scheme for Langevin equation. with square-
root noise �20�. The system is initialized with arbitrary initial
conditions and then it self-organizes to its critical point by
means of slow driving and boundary dissipation �17� �second
protocol� as follows: when the system is at an AS, the back-
ground and the activity field are increased, at a randomly
chosen site, by a small amount ��E=��=0.1�; then, the dy-
namics proceeds according to Eq. �3�. The open boundaries
allow us to decrease the averaged background field and
hence the linear term in the activity equation, until eventu-
ally a new AS is reached. Then, a new driving step is per-
formed and so on, until a steady state is reached. Figure 1

shows the evolution of Ē �minus its average value� as a func-
tion of the number of driving steps in such a state; linear
increases are followed by abrupt decays corresponding to
dissipative avalanches. From such time series, we measure
the three cumulants of the spatially averaged background
field �equivalent to the force above� and, from them, the
critical point, Y�z� and Q�y�. Results for L=210, summarized
in Fig. 2, show an excellent agreement with their counter-
parts obtained for Eq. �1�.

To obtain results for Eq. �3� using the strategy in �6�, one
needs to introduce a slowly moving parabolic potential
�m2�w−H�x , t�� with H�x , t�=
0

t dt���x , t��� for the back-
ground field and periodic boundaries. This is achieved by
including a term −m2��x , t� in its Langevin Eq. �3� and in-
creasing E by a small constant amount, m2�w, after each
avalanche. When integrated in time, these two contributions
give a slowly moving parabolic potential for E. Additionally,
after each avalanche, activity at some random point is cre-
ated to avoid remaining trapped in the AS. This causes a
cascade of rearrangements in the activity and background
fields which eventually stops owing to the dissipation in E
induced by the negative forcing term �−m2��. From the cor-
relations of average background field values in the AS at
different steps, we obtain results identical to those reported
before for both Y�z� and Q�y� �see Fig. 2�.

The �impressive� overlap of whole functions makes a
much stronger case for the conjectured equivalence between
Eqs. �1� and �3� �and also between the two protocols� than
any previous numerical agreement of critical exponents.
These conclusions have also been extended to bidimensional
systems �not shown�.

Let us now study different stochastic sandpile models �10�
as well as a reaction diffusion system with conservation �9�,
all of them argued to be in the C-DP class �18� but for which,
owing to the discrete nature of particles or grains, the con-
tinuous statistical tilt symmetry �which leaves the physics of
Eq. �1� invariant under the continuous h�x�→h�x�+�h�x�
transformation �7�� is broken. Using the self-organized pro-
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FIG. 2. �Color online� Upper �lower�: Y�z� �Q�y�� for nine different one-dimensional cases: �i� Eq. �1� for random field and �ii� random
bond disorder �from �6�� and �iii� from our own simulations, �iv� self-organized Eq. �1�, �v� C-DP �Eq. �3�� �vi� self-organized Eq. �3�, �vii�
self-organized Oslo model and, finally, �viii� a critical conserved reaction diffusion model. All these curves collapse into a unique one,
different from the one obtained for �ix� DP with many AS �Eq. �4�� following the self-organized procedure. Differences are larger for Q�y�
than for Y�z�. Inset: function S�u�, from which Q�y� is determined, for Eq. �3�.
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tocol, we produce the cusps reported in Fig. 2. The curves
overlap almost perfectly with the previously obtained ones,
implying that the continuous statistical tilt symmetry is as-
ymptotically restored and confirming the universal behavior
of stochastic sandpiles and their associated cusps �21�. In-
stead, for the deterministic Bak-Tang-Wiesenfeld sandpile
�22�, known to exhibit different critical behavior, we have
measured different correlators, with another type of cusps
�not shown�.

�c� Finally, we apply the previous methods to the DP
�with many AS� class �Eq. �4�� for which an effective inter-
facial description can also be constructed �23�. Results are
summarized again in Fig. 2. Y�z� shows a cusp at the origin
which differs slightly from the one above; the discrepancy in
Q�y� is much more pronounced, confirming that DP exhibits
a different type of scaling, and that the cusps are a common
trait of systems with many AS. This is a remarkable, so far
unveiled, property of DP systems.

In summary, we have shown the presence of identical
cusps in systems with quenched disorder, systems with AS
and a conservation law, and self-organized stochastic sand-
piles. In contrast, different cusps are obtained for systems in
the directed percolation class as well as for the deterministic
Bak-Tang-Wiesenfeld sandpile. This enriches our present

view of universality in stick-slip/avalanching systems and
confirms the ubiquitous presence of disorder correlators with
cusps in avalanching systems, with or without quenched dis-
order.

Our protocol to determine the cusps opens a straightfor-
ward path to measure them in experiments. Note that for a
sandpile it suffices to measure its weight after every ava-
lanche to determine cusp correlators �see �24� for a student
laboratory setup�. Experimental studies of the mass of granu-
lar piles have actually noticed the presence of sawtooth fluc-
tuations �see Fig. 1 of �25��, and for experimental ricepiles,
their correlations have been looked-at �26�, but without de-
termining the relevant ones. Similarly, cusps could be easily
measured in any system, as superconductors �27�, in which
self-organized criticality has been observed in the laboratory.

Challenging questions remain unanswered: could the FRG
cusps be derived from a renormalization group solution of
Eq. �3�? Could the DP cusps be determined analytically from
Eq. �4�? Are there further systems that exhibit cusps? An-
swering these questions and studying experimental realiza-
tions would greatly enhance our understanding of stick-slip/
avalanching dynamics and would provide a rich cross
fertilization between interfaces in random media and systems
with AS.
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